Nowhere-Zero Flows on Signed Eulerian Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nowhere-zero flows on signed regular graphs

We study the flow spectrum S(G) and the integer flow spectrum S(G) of odd regular graphs. We show that there are signed graphs where the difference between the integer flow number and the flow number is greater than or equal to 1, disproving a conjecture of Raspaud and Zhu [7]. Let G be a (2t + 1)-regular graph. We show that if r ∈ S(G), then r = 2 + 1t or r ≥ 2 + 2 2t−1 . This result generaliz...

متن کامل

Nowhere-Zero 3-Flows in Signed Graphs

Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...

متن کامل

Title Nowhere - Zero 3 - Flows in Signed Graphs

Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a kvertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is nonorientable, then a...

متن کامل

The number of nowhere-zero flows on graphs and signed graphs

The existence of an integral flow polynomial that counts nowhere-zero k-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polyn...

متن کامل

The Number of Nowhere-zero Flows in Graphs and Signed Graphs

The existence of an integral flow polynomial that counts nowhere-zero k-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Note to publisher: This paper does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2017

ISSN: 0895-4801,1095-7146

DOI: 10.1137/16m1080586